Markforged

Markforged Mark Two

Our Flagship Continuous Fiber 3D Printer, built to revolutionize your manufacturing operation.

The only way to make aluminum-strength parts on your desktop - the Mark Two carbon fiber 3D printer enables engineers to effortlessly generate value for their business.

Carbon Fiber Strength

Built to Last

Precise and Beautiful Parts

and capable of replacing machined thousands of print hours. aluminum.

Print Continuous Carbon Fiber A unibody aluminum chassis and Print precise parts with best-in-

reinforced parts on your desktop precision-machined components class surface finish thanks to Onyx, - stiff, strong, extremely durable, deliver lights-out reliability over Markforged's extremely versatile micro carbon fiber filled nylon material.

www.3dz.com.mt info@3dz.com.mt

SOFTWARE

3D Printing Software Meets Production Management

Design your part, upload it into our browser-based software, select from a wide range of Composite Base materials and Continuous Fibers, and hit print. It's that simple.

Continuous Fiber Reinforcement, Made Easy.

MATERIALS

Print beautiful Onyx parts reinforced with Markforged's full range of Continuous Fibers.

Onyx

Micro carbon fiber filled nylon that forms the foundation of Markforged composite parts

Onyx – our flagship Composite Base material – is a micro carbon fiber filled nylon that yields accurate parts with impeccable surface finish. Few materials have the versatility of Onyx; it offers high strength, and chemical toughness, resistance when printed alone, and can be reinforced with Continuous Fibers to yield aluminum-strength parts. Today, there are more than a million Onyx parts in the field transforming manufacturing.

Applications

- Plastic Part Replacement
- Housings
- Sensor Mounts
- Cosmetic Prototypes

Nylon

Smooth engineering thermoplastic that can be easily painted or dyed

Nylon is an unfilled thermoplastic. It's a nonabrasive material that is great for ergonomic surfaces and workholding for pieces that are easily marred. It can be painted or dyed.

Fiberglass

Entry-level Continuous Fiber for industrial applications

Markforged's Fiberglass is entry-level Continuous Fiber -a material capable of yielding parts 10x stronger than ABS when laid into a Composite Base material like Onyx. Fiberglass is the flagship material of the Onyx Pro and X5 and printable on the Mark Two and X7, providing a more affordable alternative to Carbon Fiber.

Applications

- Ergonomic Tools
- Assembly Trays
- Cosmetic Parts

Applications

- Softjaws
- Medium-Strength Tooling
- Insulative Reinforcement
- Hand Tools

150s

MATERIALS

Print beautiful Onyx parts reinforced with Markforged's full range of Continuous Fibers.

HSHT Fiberglass

Thermally resistant Continuous Fiber for strong parts in hightemperature environments

High Strength High Temperature (HSHT) Fiberglass is defined by two characteristics: high strength (nearly equal to 6061-T6 Aluminum) and strength in high temperatures. Though not as stiff as Continuous Carbon Fiber, Onyx parts reinforced with HSHT are strong at both low and high temperatures. As a result, HSHT reinforcement is best used for parts in hightemperature environments like molds, autoclaves, and others.

Aramid Fiber (Kevlar®)

Tough, highly compliant Continuous Fiber for highimpact applications made with Dupont™ Kevlar® Fiber.

Aramid Fiber is a Kevlar® based, specialized Continuous Fiber known for its energy absorption and extreme toughness. When laid into Onyx or another Composite Base material, it yields extremely impact-resistant parts that are nearly immune to catastrophic failure (fracture). It's perfect for use in parts that are in demanding environments or are subject to repetitive loading.

Dupont[™] and Kevlar® are trademarks and registered trademarks of E. I. du Pont de Nemours and Company

Carbon Fiber

The backbone of aluminumstrength composite parts

Carbon Fiber is Markforged's unique, ultra-high-strength Continuous Fiber — when laid into a Composite Base material like Onyx, it can yield parts as strong as 6061-T6 Aluminum. It's extremely stiff and strong, and can be automatically laid down in a wide variety of geometries by Markforged 3D printers.

Applications

- Polymer Molds
- Prototype (Low-Run)
- Injection Molds
- High-Temperature Fixturing
- High-Temperature Prototypes

420

Applications

- End-of-Arm Tooling
- Stanchions, Cradles, & Supports
- Delrin® Part Replacements
- Wear Stops

Dupont™ and Delrin® are trademarks and registered trademarks of E. I. du Pont de Nemours and Company

Applications

- High-Strength Tools & Fixtures

- Brackets & Mounts
- Inspection/CMM Fixturing
- Bespoke End-Use Parts
- Functional Prototypes

PRODUCT SPECIFICATIONS

Mark Two (Gen 2)

Replace machined aluminum tooling—jigs, jaws, and fixtures—with stronger parts for a fraction of the price. The Mark Two combines our unique continuous carbon fiber reinforcement with workhorse reliability for versatile parts with 26x the strength of ABS, ready same-day for use straight off the printer.

Printer Properties	Process	Fused filament fabrication, Continuous Filament Fabrication
	Build Volume	320 x 132 x 154 mm (12.6 x 5.2 x 6 in)
	Weight	16 kg (35 lbs)
	Machine Footprint	584 x 330 x 355 mm (23 x 13 x 14 in)
	Print Bed	Kinematic coupling — flat to within 160 µm
	Extrusion System	Second-generation extruder, out-of-plastic detection
	Power	100–240 VAC, 150 W (2 A peak)
	RF Module	Operating Band 2.4 GHz Wi-Fi Standards 802.11 b/g/n
Materials	Plastics Available	Onyx, Nylon White
	Fibers Available	Carbon fiber, fiberglass, Kevlar®, HSHT fiberglass
	Tensile Strength	800 MPa (25.8x ABS, 2.6x 6061-T6 Aluminum) *
	Tensile Modulus	60 GPa (26.9x ABS, 0.87x 6061-T6 Aluminum) *
Part Properties	Layer Height	100 μm default, 200 μm maximum
	Infill	Closed cell infill: multiple geometries available
Software	Supplied Software	Eiger Cloud (Other options available at cost)
	Security	Two-factor authentication, org admin access, single sign-on

FRONT VIEW

SIDE VIEW

* Continuous carbon fiber data. Note: All specifications are approximate and subject to change without notice.

